System description

A HPR 400P system is a stand-alone portable system. It is based around a rugged, splash-proof, shock resistant and «all in one» portable cabinet. The cabinet contains all the surface electronics necessary for underwater positioning. The portable cabinet is equipped with strong carrying handles and has detachable covers at the front and rear. Together with applicable software and a transducer, the system is easy to use by simply interfacing the applicable transducer to the backplane of the portable unit.

• All systems are based around the same portable electronic cabinet, but software and transducer interfaces will vary.
• The connectors for all interfaces are made easily available from the rear.
• The transducer may be deployed from any vessel or platform.

A HPR 400P system can be directly interfaced to a Differential Global Positioning System (DGPS) receiver, making it possible to give transponder position, Super Short Base Line (SSBL) or vessel position, Long Base Line (LBL) in UTM coordinates.

Transducers

Several SSBL and LBL transducer types are available, and can be supplied with the system. A standard HPR transducer mounted on a hull unit may also be used. This would enable the portable system to be used as an emergency system if the standard system should develop a fault.
HPR 408P - LBL system with dunking transducer
The HPR 408P is a LBL system. By using LBL software and a dedicated over-the-side dunking transducer, the system becomes a surface system for any LBL or telemetry application.
Available dunking transducers:
- Dunking wide beam (MF)
- Dunking narrow beam (MF)
- Dunking narrow beam (LF)
The transducer is delivered with cable and cable drum.

HPR 408P - LBL system with subsea transceiver
The HPR 408P system can also be delivered with a subsea transceiver (HPR 408S) with transducer connected to the portable unit.
This system may be used for Remotely Operated Vehicle (ROV) LBL positioning, as well as for any other subsea module positioning requiring LBL accuracy.

HPR 410P - SSBL system
The HPR 410P is a SSBL system. It is normally delivered with the Portable Mini Transducer (PMT 301). Other transducers are available.
Together with dedicated SSBL software and the PMT 301, this system is applicable as a complete underwater navigation system. The calculation of position is based on range, vertical and horizontal angle measurements, giving three-dimensional transponder positions relative to the system’s transducer.
Available transducers:
- PMT 301 - used for LBL and SSBL operations.
 - The PMT 301 has an internal Roll / Pitch Inclinometers.
 - The PMT 301 includes an adapter for pole mounting.
- HPR standard wide / medium beam, (MF) - used for LBL and SSBL operations.
 - This transducer requires an external VRU.
- HPR narrow beam, (MF) - used for LBL and SSBL operations.
 - This transducer requires an external VRU.
- HPR medium beam, (LF) - used for LBL and SSBL operations.
 - This transducer requires an external VRU.

HPR 418P - combined LBL and SSBL system
The HPR 418P system is a powerful portable underwater positioning system. It is capable of solving most underwater positioning applications. The system is a combination of the HPR 408P and the HPR 410P, and can work in a combined mode using a LBL and SSBL transducer.
For details, see the HPR 408P and HPR 410P information above.
A complete HPR 400 portable system comprises:
- Operator station
- HPR 400 transceiver unit
- Transducer with cable
- Transponder(s)
- External sensors (optional)

Operator station
The operator station is a portable computer (Compact PC) It contains the APOS (system) software.

HPR transceiver units
Transceiver units available:
The HPR 400 Transceiver Unit (Surface unit) and the HPR 400S (Subsea unit).
The transceiver is the acoustic signal processor with transmitter and receiver electronics and software.
It processes the acoustic signals, calculates the transponder position(s) and the acoustic telemetry data, and sends the information to the Compact PC where it is presented on the display.

Transponders
Several transponder types are available. The HPR 400P system can operate with up to 56 transponder channels and feature transponder telemetry communication for use with transponder release, sensor readings and all LBL functionalities.
In addition the 14 “old” SSBL channels from the HPR 300 family can also be used.

External sensors

Vertical Reference Unit (VRU)
A VRU can be interfaced to the HPR 400P transceiver if required. The system can thereby automatically compensate for the vessel’s roll and pitch movements.
It can use the same VRU as the Dynamic Positioning (DP) system (if one is fitted).

Gyro
A number of different gyro types can be interfaced to the HPR 400P transceiver if required (syncro or serial).

Portable unit
The HPR 400 Portable unit is a 19 inch wide and 6U high transport housing. The housing has an internal support frame with anti-vibration mounts. The unit contains the HPR 400 Transceiver Unit and the Compact PC.

General
Dimensions (W x H x D)..........(534 x 360 x 560) mm
Weight...33 kg
Mains supply.....................230 Vac (110 Vac on request)

Frequencies
Medium Frequency (MF)............21,000 Hz - 32,500 Hz
Low Frequency (LF):..................9,500 Hz - 15,750 Hz

Temperatures
Operating...-10º to +55º C
Storage...-40º to +70º C

HPR 400 Transceiver Unit
For information on the HPR 400 Transceiver Unit, refer to separate documentation.

Compact PC
For information on the Compact PC refer to separate documentation.

HPR 400S units
Power supply.................................110 / 230 Vac or 24 Vdc
Power consumption............................max. 25 W

HPR S31 MF, 1000 m depth rated
- Length / diameter..........................1100 mm / 200 mm
- Weight in air / water18 kg / 8 kg

HPR S33 MF, 3000 m depth rated
- Length / diameter..........................1035 mm / 195 mm
- Weight in air / water32 kg / 22 kg

HPR S16 LF, 6000 m depth rated
- Length / diameter..........................1100 mm / 178 mm
- Weight in air / water30 kg / 15 kg
Specifications

PMT 301 Portable Mini Transducer
Height / diameter ... 410 mm / 100 mm
Weight in air / water .. 8.6 kg / 6.1 kg
Accuracy inclinometer .. 0.2°
Transducer-cable ... 30 m (standard) or 60 m (option)

HPR standard MF / LF Transducer
Height / diameter ... Depends on model
Weight in air / water .. Depends on model
Transducer-cable ... 30 m (standard) or 60 m (option)

Dunking transducer
Height / diameter ... Depends on model
Weight in air .. Depends on model
The dunking transducers listed below, (marked •), are all delivered with 75 m transducer-cable on a drum with winch.

<table>
<thead>
<tr>
<th>Transducer type</th>
<th>Accuracy</th>
<th>TD type</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPR PMT 301, MF 20-32 kHz</td>
<td>≤ 2 % of slant range</td>
<td>PMT-089962</td>
</tr>
<tr>
<td>- Wide beam ±80°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPR Standard, MF 20-32 kHz</td>
<td>≤ 5 % of slant range</td>
<td>TDS-067538</td>
</tr>
<tr>
<td>- Wide beam ±80°</td>
<td>≤ 2 % of slant range</td>
<td></td>
</tr>
<tr>
<td>- Medium beam ±55°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPR Narrow beam, MF 20-32 kHz</td>
<td>≤ 5 % of slant range</td>
<td>TDN-081633</td>
</tr>
<tr>
<td>- Wide beam ±80°</td>
<td>≤ 1 % of slant range</td>
<td></td>
</tr>
<tr>
<td>- Narrow beam ±22.5°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPR, LF 10-15 kHz</td>
<td>≤ 5 % of slant range</td>
<td>TDL-0834290</td>
</tr>
<tr>
<td>- Wide beam ±80°</td>
<td>≤ 2 % of slant range</td>
<td></td>
</tr>
<tr>
<td>- Medium beam ±55°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Dunking, MF 20-32 kHz</td>
<td>*</td>
<td>TDD-080585</td>
</tr>
<tr>
<td>- Narrow beam approx ±50°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Dunking, MF 20-32 kHz</td>
<td>*</td>
<td>TDD-088319</td>
</tr>
<tr>
<td>- Wide beam approx ±100°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Dunking, LF 10-15 kHz</td>
<td>*</td>
<td>TDD-103114</td>
</tr>
<tr>
<td>- Beam approx ±50°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ROV - RTD 333, MF 20-32 kHz</td>
<td>*</td>
<td>312-089793</td>
</tr>
<tr>
<td>- «Doughnut» shape / bronze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* ROV - RTD 333, MF 20-32 kHz</td>
<td>*</td>
<td>100-213493</td>
</tr>
<tr>
<td>- «Doughnut» shape / aluminium</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The specification is based on:
- Line of sight from transducer to transponder
- No influence from ray-bending
- Signal-to-Noise ratio in the receiver ≥ 20 dB rel. 1μPa
- Relevant signal output from transponder
- No error from heading and roll / pitch sensors
- Dunking, MF 20-32 kHz
 - Narrow beam approx ±50°
- Dunking, MF 20-32 kHz
 - Wide beam approx ±100°
- Dunking, LF 10-15 kHz
 - Beam approx ±50°
- ROV - RTD 333, MF 20-32 kHz
 - «Doughnut» shape / bronze
- ROV - RTD 333, MF 20-32 kHz
 - «Doughnut» shape / aluminium

Transponders - range capabilities

<table>
<thead>
<tr>
<th>Transponder type</th>
<th>Operating range</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard transponder w/ 188 dB SL</td>
<td>Typical 800 m - 1500 m</td>
<td></td>
</tr>
<tr>
<td>High power transponder w/ 195 dB SL</td>
<td>Typical 1500 m - 2000 m</td>
<td></td>
</tr>
<tr>
<td>High power transponder w/ 206 dB SL</td>
<td>Typical 2500 m - 4000 m</td>
<td></td>
</tr>
</tbody>
</table>

The range capabilities depends on; the vessels noise level, transponder signal level and transducer type.
Ray-bending effects may also reduce the operating range.